

Frobenius monoidal functors on Drinfeld centers

Robert Laugwitz
University of Nottingham

Joint work with Johannes Flake (Bonn) and Sebastian Posur (Münster)

https://arxiv.org/abs/2402.10094 https://arxiv.org/abs/2410.08702

and further work in preparation

Geometry, Topology, and Physics (GTP) Seminar series

NYU Abu Dhabi, Center for Quantum and Topological Systems — October 30, 2024

Outline

- 1. Motivation & Background
- 2. The projection formula morphisms
- 3. Functors on Drinfeld centers
- 4. Frobenius monoidal functors
- 5. Hopf algebra examples

Motivation — Morphisms of centers

Classical problem:

- $f: R \to S$ is a morphism of rings
- There is no restriction to a map $Z(R) \to Z(S)$ in general

Categorical analogues:

- Ring $(A, A \times A \xrightarrow{m} A, 1_A) \rightsquigarrow$ monoidal category $(C, C \times C \xrightarrow{\otimes} C, 1_C)$
- Center $Z(A) \rightsquigarrow Drinfeld center \mathcal{Z}(C)$
- Morphism of rings \leadsto (strong) monoidal functor $G \colon \mathcal{C} \to \mathcal{D}$

$$\operatorname{lax}_{A,B}^G \colon G(A) \otimes G(B)$$
 $G(A \otimes B) \colon \operatorname{oplax}_{A,B}^G$ + coherences...

Theorem (Flake-L.-Posur)

Under certain conditions, an ambiadjoint F of G induces a braided Frobenius monoidal functor $\mathcal{Z}(F) \colon \mathcal{Z}(\mathcal{D}) \to \mathcal{Z}(\mathcal{C})$.

Some motivating examples

• $\phi \colon \mathsf{H} \hookrightarrow \mathsf{G}$ finite groups, $\omega \in H^3(\mathsf{G}, \Bbbk^{\times})$ 3-cocycle,

$$\begin{array}{ll} \mathcal{Z}(\operatorname{Rep} \mathsf{H}) \to \mathcal{Z}(\operatorname{Rep} \mathsf{G}) & \text{[Flake-Harman-L.]} \\ \mathcal{Z}(\mathbf{Vect}_\mathsf{H}^{\phi^*\omega}) \to \mathcal{Z}(\mathbf{Vect}_\mathsf{G}^\omega) & \text{[Hannah-L.-Ros Camacho]} \end{array}$$

braided Frobenius monoidal functors

- Application: classifying connected étale algebras in $\mathcal{Z}(\mathbf{Vect}_{\mathsf{G}}^{\omega})$ [Davydov, Davydov–Simmons, L.–Walton, H.–L.–R.C.]
- For all $n \in \mathbb{Z}_{\geq 0}$, $t \in \mathbb{C}$,

$$\underline{\operatorname{Ind}} \colon \mathcal{Z}(\operatorname{Rep} S_n) \longrightarrow \mathcal{Z}(\underline{\operatorname{Rep}} S_t)$$

braided Frobenius monoidal functor [Flake-Harman-L.]

• Application: classify indecomposable objects in $\mathcal{Z}(\underline{\operatorname{Rep}} S_t)$ [F.-H.-L.]

This talk: General results on Frobenius monoidal functors on Drinfeld centers

Background — The Drinfeld Center

 \mathcal{C} monoidal category \rightsquigarrow Drinfeld center $\mathcal{Z}(\mathcal{C})$:

• Objects of $\mathcal{Z}(\mathcal{C})$: Pairs (V, c^V) , $V \in \mathcal{C}$, half-braiding

$$c_W^V = \times : V \otimes W \to W \otimes V$$
,

$$c_{W\otimes U}^V = (\mathrm{id}_W \otimes c_U^V)(c_W^V \otimes \mathrm{id}_U) \quad \Leftrightarrow \quad \bigvee = \quad \bigvee$$

$$\Rightarrow (V, c_V^V)$$
 solution of Quantum Yang–Baxter Equation $=$

ullet Morphisms of $\mathcal{Z}(\mathcal{C})$: morphisms in \mathcal{C} commuting with half-braidings

Theorem (Drinfeld, Majid, Joyal–Street \sim 1990)

For C a tensor category, $\mathcal{Z}(C)$ is a braided tensor category.

The braiding Ψ is obtained from the half-braidings: $\Psi_{VW}=c_W^V$.

The Drinfeld Center — Examples

Modules over a finite-dimensional Hopf algebra H, C = H-Mod

 $\Longrightarrow \mathcal{C}$ is a tensor category, with \otimes via $\operatorname{\it coproduct} \Delta \colon H \to H \otimes_{\Bbbk} H$

Question: What is the center $\mathcal{Z}(\mathcal{C})$ in this case?

Answer 1: Modules over the Drinfeld double Drin(H), a Hopf algebra Drin(H) on $H \otimes_{\mathbb{k}} H^*$ with H, H^* Hopf subalgebras.

Example

 $H=\Bbbk \mathsf{G}$ a group algebra, $|\mathsf{G}|<\infty.$ Then $\mathrm{Drin}(\mathsf{G})$ is defined on $\Bbbk \mathsf{G}\otimes \Bbbk [\mathsf{G}]$,

$$g\delta_h = \delta_{ghg^{-1}}g, \qquad \forall g, h \in \mathsf{G}.$$

More generally, twist by a 3-cocycle $\omega \leadsto \mathrm{Drin}^{\omega}(\mathsf{G})$ [Dijkgraaf–Witten theory]

- Applications: Construction of modular tensor categories, 3D TQFTs
- For G algebraic group, $\mathcal{Z}(\operatorname{Rep} \mathsf{G}) \simeq \mathcal{O}_{\mathsf{G}}\text{-}\mathbf{Mod}_{\operatorname{Rep} \mathsf{G}} =: \mathbf{QCoh}(\mathsf{G}/^{\operatorname{ad}}\mathsf{G})$

Yetter-Drinfeld Modules

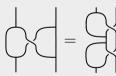
Question: What is the center $\mathcal{Z}(\mathcal{C})$ for $\mathcal{C} = H\text{-}\mathbf{Mod}$?

Answer 2: The category of Yetter–Drinfeld modules ${}^H_H\mathbf{YD}$.

Definition

Yetter–Drinfeld modules (V, a, δ) over H.

- $a = \bigvee : H \otimes V \to V$ makes V an H-module
- $\delta = \mathcal{A}: V \to H \otimes V$ makes V an H-comodule
- Compatibility: Yetter–Drinfeld condition



Proposition

For a Hopf algebra H and $C = H\text{-}\mathbf{Mod}$, $\mathcal{Z}(C) \simeq {}_H^H\mathbf{YD}$.

Drinfeld center of bimodules

More generally: C monoidal category, M a C-bimodule,

$$\triangleright : \mathcal{C} \times \mathcal{M} \to \mathcal{M}, \qquad \triangleleft : \mathcal{M} \times \mathcal{C} \to \mathcal{M}$$

Definition ($\mathcal{Z}_{\mathcal{C}}(\mathcal{M})$, Gelaki–Naidu–Nikshych, Greenough, . . .)

• **Objects:** (M,c), where $M \in \mathcal{M}$ and c half-braiding, a natural isomorphism $c_A^M : M \triangleleft A \xrightarrow{\sim} A \triangleright M$ satisfying:

$$c_{A\otimes B}^M=(A\triangleright c_B^M)(c_A^M\triangleleft B)$$

• Morphisms: $f:(M,c^M) \to (N,c^N) \stackrel{\text{corresponds to}}{\longleftrightarrow} f \in \text{Hom}_{\mathcal{M}}(M,N)$ s.t.:

$$\begin{array}{ccc} M \lhd A & & c_A^M & & A \rhd M \\ & & \downarrow f \lhd A & & \downarrow A \rhd f \\ N \lhd A & & & & A \rhd N. \end{array}$$

Centers of bimodules are 2-functorial

Special cases:

- $\mathcal{C}^{\mathrm{reg}}$ the *regular* \mathcal{C} -bimodule, action via \otimes Then $\mathcal{Z}(\mathcal{C}) = \mathcal{Z}_{\mathcal{C}}(\mathcal{C}^{\mathrm{reg}})$ the usual Drinfeld center of \mathcal{C}
- A strong monoidal functor $G \colon \mathcal{C} \to \mathcal{D}$ makes \mathcal{D} a \mathcal{C} -bimodule, \mathcal{D}^G restricting $\mathcal{D}^{\mathrm{reg}}$ along G
- $\mathcal{Z}_{\mathcal{C}}(\mathcal{D}^G)$ is a monoidal category [Majid]

Proposition (2-Functoriality [Shimizu])

A C-bimodule functor $F \colon \mathcal{M} \to \mathcal{N}$ induces a functor of categories

$$\mathcal{Z}_{\mathcal{C}}(F) \colon \mathcal{Z}_{\mathcal{C}}(\mathcal{M}) \to \mathcal{Z}_{\mathcal{C}}(\mathcal{N}).$$

Bimodule transformation $\eta \colon F \to G$ gives a natural transformation $\mathcal{Z}_{\mathcal{C}}(\eta) \colon \mathcal{Z}_{\mathcal{C}}(F) \to \mathcal{Z}_{\mathcal{C}}(G) \Longrightarrow 2\text{-functor } \mathcal{Z}_{\mathcal{C}} \colon \mathcal{C}\text{-}\mathbf{BiMod} \to \mathbf{Cat}$

Monoidal adjunctions

Define a **2-category** $\mathbf{Cat}_{\mathrm{lax}}^{\otimes}$:

- Objects: monoidal categories
- 1-Morphisms: *lax* monoidal functors
- 2-Morphisms: monoidal natural transformations $\eta: F \to G$:

$$F(X) \otimes F(Y) \xrightarrow{\operatorname{lax}_{X,Y}^{F}} F(X \otimes Y) \qquad \qquad \operatorname{lax}_{0}^{G} \xrightarrow{\operatorname{1}} \operatorname{lax}_{0}^{F}$$

$$\downarrow^{\eta_{X} \otimes \eta_{Y}} \xrightarrow{\operatorname{lax}_{X,Y}^{G}} G(X \otimes Y) \qquad F(1) \xrightarrow{\eta_{1}} G(1)$$

Definition (Monoidal adjunction)

A monoidal adjunction $G \dashv R$ is an adjunction internal to $\mathbf{Cat}^{\otimes}_{lav}$.

- $G \dashv R$ monoidal adjunction $\Longrightarrow G$ is strong monoidal
- G strong monoidal $\Rightarrow \exists !$ lax structure on R s.t. $G \dashv R$ is a monoidal adjunction [Kelly '74, doctrinal adjunction]

The projection formula morphisms

Definition (Projection formula morphisms)

If lproj^R and rproj^R are invertible, say: the *projection formula holds* for R.

 In representation theory (Frobenius reciprocity): H ⊂ G finite groups, Ind ¬Res (op)monoidal adjunction,

$$\operatorname{lproj}_{VW} : \operatorname{Ind}(\operatorname{Res}(V) \otimes W) \xrightarrow{\sim} V \otimes \operatorname{Ind}(W)$$

• In algebraic geometry: $f: X \to Y$ morphism of schemes, $f^* \dashv f_*$, $\mathcal{E} \in \mathbf{QCoh}(Y)$, $\mathcal{F} \in \mathbf{QCoh}(X)$ locally free,

$$\operatorname{lproj}_{\mathcal{E},\mathcal{F}} \colon \mathcal{E} \otimes_{\mathcal{O}_X} f_*(\mathcal{F}) \xrightarrow{\sim} f_*(f^*(\mathcal{E}) \otimes_{\mathcal{O}_X} \mathcal{F})$$

The projection formula morphisms

A sufficient criterion:

Proposition (Fausk–Hu–May, Flake–L.–Posur)

 \mathcal{C} rigid (left and right duals exist) \Longrightarrow the projection formula holds for R

- More generally, if $\mathcal C$ has internal hom objects and G preserves them, then the projection formulas hold for R.
- ullet For an opmonoidal adjunction $G\dashv L$, the projection formula morphisms

$$L(GA \otimes X) \xrightarrow{\operatorname{lproj}_{A,X}} A \otimes LX, \qquad L(A \otimes GA) \xrightarrow{\operatorname{rproj}_{X,A}} LX \otimes A$$

are also called Hopf operators

• The monad $G \circ L$ is a *Hopf monad* if and only if the projection formulas hold for $L \dashv G$ [Bruguieres–Lack–Virelizier '11].

Categorical bimodule functors

Proposition (F.–L.–P.)

Let $G \dashv R$ be a monoidal adjunction. projection formula \Longrightarrow morphism of C-bimodules $R: \mathcal{D}^G \to \mathcal{C}$ with:

$$R(A \triangleright X) \xrightarrow{\lim_{A,X} A} A \triangleright RX \qquad R(X \triangleleft A) \xrightarrow{\lim_{X,A} RX} RX \triangleleft A$$

$$R(GA \otimes X) \xrightarrow{\lim_{A,X} A} A \otimes RX \qquad R(X \otimes GA) \xrightarrow{(\operatorname{rproj}_{X,A})^{-1}} RX \otimes A$$

Monoidal adjunction of categories /*C*-bimodules:

$$\mathcal{C} \overset{G}{\underset{R}{\smile}} \mathcal{D}^{G} \quad \Longrightarrow \quad \mathcal{Z}_{\mathcal{C}}(\mathcal{C}) \overset{\mathcal{Z}_{\mathcal{C}}(G)}{\underset{\mathcal{Z}_{\mathcal{C}}(R)}{\smile}} \mathcal{Z}_{\mathcal{C}}(\mathcal{D}^{G})$$

 \ldots since $\mathcal{Z}_{\mathcal{C}} \colon \mathcal{C}\text{-}\mathbf{BiMod} \to \mathbf{Cat}$ is a 2-functor

Functors on Drinfeld centers

We can now **compose**:

$$\mathcal{Z}(\mathcal{D}) \xrightarrow{\mathcal{Z}(R)} \mathcal{Z}_{\mathcal{C}}(\mathcal{C}) = \mathcal{Z}(\mathcal{C})$$

$$F^{G} \rightarrow \mathcal{Z}_{\mathcal{C}}(\mathcal{D}^{G}) \xrightarrow{\mathcal{Z}_{\mathcal{C}}(R)}$$

$$F^G \colon \mathcal{Z}(\mathcal{D}) \hookrightarrow \mathcal{Z}(\mathcal{D}^G), \qquad (M, c^M) \mapsto (M, c^M_{G(-)})$$

Theorem (Flake–L.–Posur)

For a monoidal adjunction $G \dashv R$ satisfying the projection formula, R induces a braided lax monoidal functor $\mathcal{Z}(R) \colon \mathcal{Z}(\mathcal{D}) \to \mathcal{Z}(\mathcal{C}), (X, c) \mapsto (RX, c^R),$

$$c_A^R = \left(RX \otimes A \xrightarrow{\operatorname{rproj}_{X,A}} R(X \otimes GA) \xrightarrow{R(c_{GA})} R(GA \otimes X) \xrightarrow{(\operatorname{lproj}_{A,X})^{-1}} A \otimes RX\right).$$

$$\operatorname{lax}_{(X,c),(Y,d)}^{\mathcal{Z}(R)} = \operatorname{lax}_{X,Y}^R \qquad \operatorname{lax}_0^{\mathcal{Z}(R)} = \operatorname{lax}_0^R$$

Functoriality:
$$\mathcal{C} \xrightarrow{G_1} \mathcal{D} \xrightarrow{G_2} \mathcal{E}, G_i \dashv R_1, i = 1, 2 \Longrightarrow \mathcal{Z}(R_1R_2) = \mathcal{Z}(R_1)\mathcal{Z}(R_2)$$

Implication and Examples

Corollary (Application)

The functor $\mathcal{Z}(\mathcal{D}) \xrightarrow{\mathcal{Z}(R)} \mathcal{Z}(\mathcal{C})$ maps (commutative) monoids in $\mathcal{Z}(\mathcal{D})$ to (commutative) monoids in $\mathcal{Z}(\mathcal{C})$.

Example:

• $H \subset G$ finite groups, monoidal adjunction $\operatorname{Rep}(G)$ $\xrightarrow{\perp}$ $\operatorname{Res}(H)$ $\operatorname{CoInd} \simeq \operatorname{Ind}$

Res

- $\mathcal{Z}(\operatorname{Rep} \mathsf{H}) \simeq {}^{\mathsf{H}}_{\mathsf{H}}\mathbf{YD}$ Yetter–Drinfeld modules Objects: $V \in \operatorname{Rep} \mathsf{H}$ with coaction $\delta \colon V \to \mathsf{H} \otimes V$, $v \mapsto |v| \otimes v$, satisfying $|h \cdot v| = h|v|h^{-1}$
- Obtain braided lax monoidal functor $\mathcal{Z}(R)$: ${}_{\mathsf{H}}^{\mathsf{H}}\mathbf{Y}\mathbf{D} \to {}_{\mathsf{G}}^{\mathsf{G}}\mathbf{Y}\mathbf{D}$, $\mathcal{Z}(R)(V) = \mathsf{G} \otimes_{\mathsf{H}} V$ with coaction $\delta^{\mathrm{Ind}}(g \otimes v) = g|v|g^{-1} \otimes (g \otimes v)$

Frobenius monoidal functors

Definition

A Frobenius monoidal functor $F \colon \mathcal{D} \to \mathcal{C}$ is a lax and *oplax* monoidal functor

$$\begin{array}{l}
\operatorname{lax}_{X,Y} \colon F(X) \otimes F(Y) \longrightarrow F(X \otimes Y), \quad \operatorname{lax}_{0} \colon \mathbb{1} \longrightarrow F(\mathbb{1}), \\
\operatorname{oplax}_{X,Y} \colon F(X \otimes Y) \longrightarrow F(X) \otimes F(Y), \quad \operatorname{oplax}_{0} \colon F(\mathbb{1}) \longrightarrow \mathbb{1},
\end{array}$$

such that

$$F(X) \otimes F(Y) \otimes F(Z) \xrightarrow{\operatorname{lax}_{X,Y} \otimes \operatorname{id}_{F(Z)}} F(X) \otimes F(X) \otimes F(Z) \xrightarrow{\operatorname{lax}_{X,Y} \otimes \operatorname{id}_{F(Z)}} F(X) \otimes F(X) \otimes F(Z),$$

and an analogous diagram, commute for any objects X, Y, Z of \mathcal{D} .

Example Any strong monoidal functor is Frobenius monoidal.

Ambiadjunctions

Definition

An *ambiadjunction* $F \dashv G \dashv F$ consists of:

- Functors $\mathcal{C} \xrightarrow{G} \mathcal{D} \xrightarrow{F} \mathcal{C}$,
- natural transformations

$$\operatorname{unit}^L \colon \operatorname{id}_{\mathcal{D}} \to GF, \quad \operatorname{counit}^L \colon FG \to \operatorname{id}_{\mathcal{C}}$$
 which make F a *left adjoint* to $G, F \dashv G$.

natural transformations

$$\operatorname{unit}^R \colon \operatorname{id}_{\mathcal{C}} \to FG$$
, $\operatorname{counit}^R \colon GF \to \operatorname{id}_{\mathcal{D}}$, which make F a *right adjoint* to G , $G \dashv F$.

• The functors F, G in an ambiadjunction is also called *Frobenius functors*.

Question: If G is strong monoidal, when is F or $\mathcal{Z}(F)$ Frobenius monoidal?

First examples

- Let H ⊂ G be an inclusion of finite groups and consider the strong monoidal functor Res: Rep G → Rep H. Its left and right adjoints Ind and CoInd are isomorphic and we obtain an ambiadjunction Ind ⊢ Res ⊢ Ind.
- ullet For H a finite-dimensional Hopf algebra, the forgetful functor

$$G \colon H\text{-}\mathbf{Mod} \to \mathbf{Vect}$$

is *strong monoidal*. A non-zero right integral $\lambda \colon H \to \mathbb{k}$ for H^* gives an isomorphism $\operatorname{Ind} \cong \operatorname{CoInd}$.

• Let $\Bbbk C_\ell = \Bbbk \left\langle g | g^\ell = 1 \right\rangle$ be the group algebra of a cyclic group of order ℓ and

$$T := \mathbb{k}\langle x, q | x^{\ell} = 0, q^{\ell} = 1, qx = \epsilon x q \rangle,$$

for $\epsilon \in \mathbb{k}^{\times}$ a primitive ℓ -th root of unity, the Taft algebra. It can be shown that Ind and CoInd are *non-isomorphic* for the inclusion $\mathbb{k}\mathsf{C}_{\ell} \hookrightarrow T$.

Frobenius ⇒ Frobenius monoidal

Recall that both adjunctions $F \dashv G$ and $G \dashv F$ come with a *right projection* formula morphism, rproj^R respectively rproj^L .

Theorem (F.–L.–P.)

Assume given an ambiadjunction $F\dashv G\dashv F$ with G strong monoidal. If

$$FX\otimes A \xrightarrow{\operatorname{rproj}_{A,X}^R} F(X\otimes GA)$$
 and $F(X\otimes GA) \xrightarrow{\operatorname{rproj}_{X,A}^L} FX\otimes A$

are mutual inverses, then $F: \mathcal{D} \to \mathcal{C}$ with lax^F and oplax^F is a Frobenius monoidal functor.

Proof sketch:

• Assumptions \iff $F \dashv G \dashv F$ lifts to an ambiadjunction of right \mathcal{C} -module categories between

$$G \colon \mathcal{C} \to \mathcal{D}^G$$
 and $F \colon \mathcal{D}^G \to \mathcal{C}$

Frobenius ⇒ **Frobenius** monoidal

Proof sketch (continued):

Composition with F, G induces functors

$$End_{\mathbf{Mod}\text{-}\mathcal{C}}(\mathcal{C}) \xrightarrow{F \circ (-) \circ G} End_{\mathbf{Mod}\text{-}\mathcal{C}}(\mathcal{D}^G)$$

- \bullet The ambiadjunction $F\dashv G\dashv F$ makes both compositions Frobenius monoidal functors
- There is a strong monoidal functor

Emb:
$$\mathcal{D} \to \operatorname{End}_{\mathbf{Mod}\text{-}\mathcal{C}}(\mathcal{D}^G), \quad X \mapsto X \otimes (-).$$

There is an equivalence of monoidal categories

$$\mathcal{C} \xrightarrow{\sim} \operatorname{End}_{\mathbf{Mod}\text{-}\mathcal{C}}(\mathcal{C}), \quad X \mapsto X \otimes (-).$$

The composition

$$\mathcal{D} \xrightarrow{\operatorname{Emb}} \operatorname{End}_{\operatorname{\mathbf{Mod-}}\mathcal{C}}(\mathcal{D}^G) \xrightarrow{F \circ (-) \circ G} \operatorname{End}_{\operatorname{\mathbf{Mod-}}\mathcal{C}}(\mathcal{C}) \simeq \mathcal{C}$$
 is isomorphic to F as both lax and oplax monoidal functor.

Hence. F is Frobenius monoidal.

Lifting to the center

Both adjunctions $F \dashv G$ and $G \dashv F$ also have a *left projection formula morphism*, lproj^R respectively lproj^L .

Theorem (F.–L.–P.)

Assume given an ambiadjunction $F \dashv G \dashv F$ with G strong monoidal. If

$$\operatorname{rproj}_{A,X}^R = (\operatorname{rproj}_{X,A}^L)^{-1}$$
 and $\operatorname{lproj}_{X,A}^R = (\operatorname{lproj}_{A,X}^L)^{-1}$

are mutual inverses, then $\mathcal{Z}(F) \colon \mathcal{Z}(\mathcal{D}) \to \mathcal{Z}(\mathcal{C})$ is a braided Frobenius monoidal functor.

- $\mathcal{Z}(F)$ has the *same* lax and oplax monoidal structures as F
- **Proof sketch:** Assumptions \iff $F \dashv G \dashv F$ lifts to an ambiadjunction of \mathcal{C} -bimodule categories between

$$G \colon \mathcal{C} \to \mathcal{D}^G$$
 and $F \colon \mathcal{D}^G \to \mathcal{C}$

Lifting to the center

Proof sketch (continued):

- If the projection formulas hold for the monoidal adjunction $G \dashv R$, then $\mathcal{Z}(R)$ is a braided lax monoidal functor.
- Dually, if the projection formulas hold for the *opmonoidal* adjunction $L \dashv G$, then $\mathcal{Z}(L)$ is a braided *oplax* monoidal functor.
- The functors $\mathcal{Z}(R)$ and $\mathcal{Z}(L)$ are *different*, in general, even when R=L as functors.
- The half braidings are different:

$$\mathcal{Z}(R)(X,c) = (R(X), c_A^{RX}) = \left(RX \otimes A \xrightarrow{\operatorname{rproj}_{A,X}^R} R(X \otimes GA) \xrightarrow{R(c_{GA}^X)} R(GA \otimes X) \xrightarrow{(\operatorname{lproj}_{X,A}^R)^{-1}} A \otimes RX\right)$$

$$\mathcal{Z}(L)(X,c) = (L(X), c_A^{LX}) = \left(LX \otimes A \xrightarrow{(\operatorname{rproj}_{A,X}^L)^{-1}} L(X \otimes GA) \xrightarrow{L(c_{GA}^X)} L(GA \otimes X) \xrightarrow{\operatorname{lproj}_{X,A}^L} A \otimes LX\right)$$

• Thus, for F=R=L, $\mathcal{Z}(R)$ and $\mathcal{Z}(L)$ coincide when $\operatorname{rproj}_{AX}^R=(\operatorname{rproj}_{XA}^L)^{-1}$ and $\operatorname{lproj}_{XA}^R=(\operatorname{lproj}_{AX}^L)^{-1}$.

Hopf algebra examples

- $\varphi \colon K \hookrightarrow H$ an inclusion of Hopf algebras:
- Adjunctions: $H ext{-Mod}$ $\xrightarrow{\perp}$ $K ext{-Mod}$, $H ext{-Mod}$ $\xrightarrow{\top}$ $K ext{-Mod}$
- The projection formula *always* hold for Ind . If H is *finitely-generated* projective as a K-module, then the projection formulas hold for CoInd .
- $K \subset H$ is a Frobenius extension if there exists a Frobenius morphism $\operatorname{tr}: H \to K$ s.t. $H \cong \operatorname{Hom}_K(H,K) = \operatorname{CoInd}(K), 1 \mapsto \operatorname{tr}$, see e.g. [Fischmann–Montgomery–Schneider '97].
- If $K \subset H$ is a Frobenius extension then $\operatorname{Ind} \cong \operatorname{CoInd}$ and we have an ambiadjunction $\operatorname{Ind} \dashv \operatorname{Res} \dashv \operatorname{Ind}$.

Hopf algebra extensions

Theorem (F.–L.–P.)

If $H \subset K$ is a Frobenius extension of Hopf algebras such the Frobenius morphism $\mathrm{tr}\colon H \to K$ is a morphism of

- (i) right H-comodules
- (ii) right and left H-comodules

then

- (i) $F: K\text{-}\mathbf{Mod} \to H\text{-}\mathbf{Mod}$ is a Frobenius monoidal functor
- (ii) $\mathcal{Z}(F) \colon \mathcal{Z}(K\operatorname{-Mod}) \to \mathcal{Z}(H\operatorname{-Mod})$ is a braided Frobenius monoidal functor.
 - (i) holds for all Frobenius extensions we know.
 - (ii) needs relative unimodularity, e.g. semisimplicity of H.

Hopf algebra extensions

- **Recall:** $\mathcal{Z}(H\text{-}\mathbf{Mod}) \simeq {}^H_H\mathbf{YD}$ Yetter–Drinfeld modules over H.
- Objects: H-modules V with a coaction $\delta^V(v) = v^{(-1)} \otimes v^{(0)}$ such that $\delta^V(h \cdot v) = h_{(1)}v^{(-1)}S(h_{(3)}) \otimes h_{(2)} \cdot v^{(0)},$

where $\Delta(h) = h_{(1)} \otimes h_{(2)}$ is the coproduct.

• The functor $\mathcal{Z}(F)$ is given by

$$\mathcal{Z}(F)(V, \delta^V) = (FV = \operatorname{Ind}(V) = H \otimes_K V, \ \delta^{FV}),$$

$$\delta^{FV}(h \otimes v) = h_{(1)}v^{(1)}S(h_{(3)}) \otimes (h_{(2)} \otimes v^{(0)}).$$

- Condition (i) holds for large classes of Frobenius extensions of Hopf algebras, (ii) is more special. First examples:
 - For kH ⊂ kG group algebras, (ii) holds.
 - For $\mathbb{k} \subset H$, H finite-dimensional, (i) holds. (ii) is equivalent to H^* being unimodular.

Examples

• Consider the small quantum group $u_{\epsilon}(\mathfrak{sl}_2)$ for ϵ a primitive ℓ -th root of unity ϵ . The Cartan part is the group algebra $\mathbb{k}\mathsf{C}_{\ell}$. The extension $\mathbb{k}\mathsf{C}_{\ell} \subset u_{\epsilon}(\mathfrak{sl}_2)$ satisfies (i) but not (ii). Hence

Ind:
$$\mathbb{k}\mathsf{C}_{\ell}\text{-}\mathbf{Mod} \to u_{\epsilon}(\mathfrak{sl}_2)\text{-}\mathbf{Mod}$$

is a Frobenius monoidal functor but does *not* extend to Drinfeld centers.

• The (Kac–De Concini) quantum group $U_{\epsilon}(\mathfrak{g})$ contains a large commutative Hopf subalgebra $Z=\Bbbk[E_i^{\ell},F_i^{\ell},K_i^{\pm\ell}]$, the algebra of functions \mathcal{O}_{H} of an algebraic group H. The inclusion $Z\subset U_{\epsilon}(\mathfrak{g})$ satisfies (i) but not (ii). \Rightarrow Frobenius monoidal functor

Ind:
$$\mathbf{QCoh}(\mathsf{H}/^{\mathrm{ad}}\mathsf{H}) \to U_{\epsilon}(\mathfrak{g})\text{-}\mathbf{Mod}$$

- In both cases, we still have *lax* and *oplax* monoidal functors on the center.
- If H is a finite-dimensional semisimple and co-semisimple Hopf algebra , then any extension of Hopf algebras $K \subset H$ satisfies (ii).

... Thank you for your attention!