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Classical problem:
e f: R — S is a morphism of rings
® There is no restriction to a map Z(R) — Z(S) in general
Categorical analogues:
® Ring (A, Ax A ™ A 1,) ~ monoidal category (C,C x C 2, C,1¢)
e Center Z(A) ~ Drinfeld center Z(C)
® Morphism of rings ~ (strong) monoidal functor G: C — D

~

—_—
1ax§ : G(A) @ G(B) G(A® B): oplax§ , T coherences...
—_  ~

Theorem (Flake—L.—Posur)

Under certain conditions, an ambiadjoint F' of G induces a braided Frobenius
monoidal functor Z(F): Z(D) — Z(C).




P g | Some motivating examples

® ¢: H < G finite groups, w € H3(G,k*) 3-cocycle,
Z(RepH) = Z(Rep G) [Flake—Harman-L.]
Z(Vect! “) — Z(Vect¥) [Hannah-L.—Ros Camacho]
braided Frobenius monoidal functors

e Application: classifying connected étale algebras in Z(Vectg) [Davydov,
Davydov-Simmons, L.—Walton, H.-L.-R.C ]

® Foralln e Zsy, tcC,
Ind: Z(Rep S,,) — Z(Rep St)

braided Frobenius monoidal functor [Flake~Harman-L.]
e Application: classify indecomposable objects in Z(Rep S;) [F.—H.-L.]

This talk: General results on Frobenius monoidal functors on Drinfeld centers



P W | Background — The Drinfeld Center

C monoidal category ~~ Drinfeld center Z(C):
e Objects of Z(C): Pairs (V,c"), V € C, half-braiding
Ay =X:VeaW->WwWaV,

. . /) /
B = (dw ® )y @idy) //\/ -
\/ //
= (V, cV)) solution of Quantum Yang—Baxter Equation ) = ()
v N o

® Morphisms of Z(C): morphisms in C commuting with half-braidings

Theorem (Drinfeld, Majid, Joyal-Street ~1990)

For C a tensor category, Z(C) is a braided tensor category.

The braiding W is obtained from the half-braidings: Wy = ¢y,



P Wit | The Drinfeld Center — Examples

Modules over a finite-dimensional Hopf algebra H, C = H-Mod
= C is a tensor category, with ® via coproduct A: H — H ®y H

Question: What is the center Z(C) in this case?

Answer 1: Modules over the Drinfeld double Drin(H), a Hopf algebra
Drin(H) on H ®x H* with H, H* Hopf subalgebras.

H = kG a group algebra, |G| < co. Then Drin(G) is defined on kG ® k[G],

g0n = Oghg—19, Vg, h € G.

More generally, twist by a 3-cocycle w ~~ Drin®(G) [Dijkgraaf-Witten theory]

e Applications: Construction of modular tensor categories, 3D TQFTs
® For G algebraic group, Z(Rep G) ~ Og-Modgepc =: QCoh(G/24G)
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Question: What is the center Z(C) for C = H-Mod?
Answer 2: The category of Yetter—Drinfeld modules fIYD.

Definition
Yetter—Drinfeld modules (V,a, §) over H.
e o= H®V — V makes V an H-module
® =V = H®V makes V an H-comodule

® Compatibility: Yetter—Drinfeld condition =

For a Hopf algebra H and C = H-Mod, Z(C) ~ 2YD.

.
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More generally: C monoidal category, M a C-bimodule,
>:Cx M —=> M, AMxC—->M

Definition (Z¢(M), Gelaki-Naidu—Nikshych, Greenough,

¢ Objects: (M, c) where M € M and ¢ half-braiding, a natural
isomorphism X : M 9 A —+ A M satisfying:

CA®B (A cy )(CA aB)

® Morphisms: f: (M,cM) — (N, V) corregpons to f € Homp (M, N) s.t

CM
M<A A s A M

lf«A lA» Vi
i

N<A Ap> N.
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Special cases:

® (™8 — the regular C-bimodule, action via ®
Then Z(C) = Z¢(C**®) — the usual Drinfeld center of C

® A strong monoidal functor G: C — D makes D a C-bimodule, D¢ —
restricting D™ along G
e Z:(D%) is a monoidal category [Majid]

Proposition (2-Functoriality [Shimizu])
A C-bimodule functor F': M — N induces a functor of categories

ZC(F): Zc(./\/l) — Zc(N)

Bimodule transformation n: F' — G gives a natural transformation
Ze(n): Ze(F) = Z¢(G) = 2-functor Z¢: C-BiMod — Cat




P Wi | Monoidal adjunctions

Define a 2-category Cat”_:

lax~

® Objects: monoidal categories

® 1-Morphisms: /ax monoidal functors

® 2-Morphisms: monoidal natural transformations n: F' — G-

FOO @ F) 255 F(x o v)

lax$ 1 lax?’
J/nx®ny laxC l"]X@Y y Q
F(1) — 2 G(1

GX)®G(Y) 2% G(X Y) )

Definition (Monoidal adjunction)

®

lax*

A monoidal adjunction G 4 R is an adjunction internal to Cat

® (G - R monoidal adjunction = G is strong monoidal
® (& strong monoidal = 3! /ax structure on R s.t. G 4 R is a monoidal
adjunction [Kelly ‘74, doctrinal adjunction]
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Definition (Projection formula morphisms)

Iproj% rproif
A®RX oA x R(GA®X) RX®A oA R(X ® GA)
RG(A) ® RX RX ® RG(A)

If Iproj® and rproj® are invertible, say: the projection formula holds for R.

e In representation theory (Frobenius reciprocity): H C G finite groups,
Ind - Res (op)monoidal adjunction,

Iprojyy: Ind(Res(V) @ W) = V @ Ind(W)
® |n algebraic geometry: f: X — Y morphism of schemes, f* 4 fi,
€ € QCoh(Y), F € QCoh(X) locally free,

Iproje 71 € ®ox fulF) = fu(f*(€) ®ox F)
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A sufficient criterion:

Proposition (Fausk-Hu—May, Flake-L.—Posur)

C rigid (left and right duals exist) => the projection formula holds for R

® More generally, if C has internal hom objects and G preserves them, then
the projection formulas hold for R.

® For an opmonoidal adjunction G - L, the projection formula morphisms

LGA® X) 2945 Ao LX,  LAeGA) 294 1x w4

are also called Hopf operators

® The monad G o L is a Hopf monad if and only if the projection formulas
hold for L 4 G [Bruguieres—Lack—Virelizier '11].
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Proposition (F.—L.—P.)
Let G 4 R be a monoidal adjunction.
projection formula = morphism of C-bimodules R: D¢ — C with:

lin!
R(AbX)—= 4 Av RX R(X a A)
I

lin% 4
——— > RX<A
(lPI"OJA,X)_l (I"If’lfoj)(,A)_1 ”
e

R(GA® X)

A® RX R(X®GA) RX® A
Monoidal adjunction of categories /C-bimodules:
G — Ze(G) —,
C - 1L PG = Z:(0) - 1 Zo(DY)
T~r— T Ze(Rm

...since Z¢: C-BiMod — Cat is a 2-functor
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Z(R)

We can now compose: Z(D) Z:(C) = Z(C)

TR 26(D6) =

Zc(R)
FO: Z(D) = Z(D%),  (M,cM) s (M,c}_)

Theorem (Flake—L.—Posur)

For a monoidal adjunction G 1 R satisfying the projection formula, R induces
a braided lax monoidal functor Z(R): Z(D) — Z(C), (X,c) — (RX, cP),

TOj ¢ Iproj =1
i = (RX ® A 2254 R(X © GA) 2%, R(GA® X) T A® RX).

Z(R) Z(R)

lax( X, (Yid) = laXX v laxg ™ = laxiy

N

Functoriality: ¢ <5 D 9% ¢, G, 4Ry, i = 1,2 = Z(RiRo) = Z(R1)Z(Ro)



I fgon Implication and Examples

Corollary (Application)

The functor Z(D) =L, Z(C) maps (commutative) monoids in Z(D) to

(commutative) monoids in Z(C).

Example: Res

® H C G finite groups, monoidal adjunction Rep(G) L Res(H)
~

Colnd ~ Ind
e Z(RepH) ~ YD — Yetter-Drinfeld modules
Objects: V' € Rep H with coaction §: V - H®V, v — |v| ® v,
satisfying |h - v| = hlv|h™!
e Obtain braided lax monoidal functor Z(R): HYD — YD,
Z(R)(V)=G®uV with coaction §™(g®v)=glvjg™! ® (g @)
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Definition

A Frobenius monoidal functor F': D — C is a lax and oplax monoidal functor
laxxy: F(X)® F(Y) — F(X®Y), laxo: 1 — F(1),
oplaxyy: F(X®Y) — F(X)® F(Y), oplaxg: F(1) — 1,

such that FX)@F(Y)® F(Z)

idF<X>®°ply M\Y@idjm

FX)QFY ®Z) FIX®Y)® F(Z),

% F(X QY ® Z) oplaxygy,z

and an analogous diagram, commute for any objects X, Y, Z of D.

Example Any strong monoidal functor is Frobenius monoidal.
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Definition
An ambiadjunction F' 4 G - F' consists of:
® Functors C g> DL C,
® natural transformations
unit”: idp — GF, counit’: FG — ide
which make F' a left adjoint to G, F' 4 G,
® natural transformations
unit?®: ide — FaG, counit™: GF — idp,
which make F' a right adjoint to G, G 1 F.

® The functors F', G in an ambiadjunction is also called Frobenius functors.
Question: If G is strong monoidal, when is F' or Z(F') Frobenius monoidal?

V.
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® Let H C G be an inclusion of finite groups and consider the strong
monoidal functor Res: Rep G — Rep H. Its left and right adjoints Ind
and Colnd are isomorphic and we obtain an ambiadjunction
Ind 4 Res - Ind.

® For H a finite-dimensional Hopf algebra, the forgetful functor

G: H-Mod — Vect

is strong monoidal. A non-zero right integral \: H — k for H* gives an
isomorphism Ind = Colnd.
e Let kC; =k (g|g* = 1) be the group algebra of a cyclic group of order ¢
and
T :=k(z,g|z* =0,¢° = 1, gz = exg),
for e € k™ a primitive /-th root of unity, the Taft algebra. It can be shown
that Ind and Colnd are non-isomorphic for the inclusion kC; — T.
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Recall that both adjunctions F' 4 G and G - ' come with a right projection
formula morphism, rproj’ respectively rproj”.

Theorem (F.-L.—P.)

Assume given an ambiadjunction F' 4 G - F with G strong monoidal. If

;L
IProjx 4

rproj&
FX® A% (X @ GA) and F(X ® GA) FX®A

are mutual inverses, then F': D — C with lax’ and oplax® is a Frobenius
monoidal functor.

Proof sketch:

® Assumptions <= F' 4 G - F' lifts to an ambiadjunction of right
C-module categories between

G:C—D%and F: D¢ = C
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Proof sketch (continued):
® Composition with F', G induces functors

Go(—)oF
—
Endmod-c(C) Fo(—)oG Endnod.c (DY)

® The ambiadjunction F' 4 G 4 F' makes both compositions Frobenius monoidal functors
® There is a strong monoidal functor
Emb: D — Endymeac(D%), X = X @ (—).
® There is an equivalence of monoidal categories
C - Endmodc(C), X = X ®(—).
® The composition

D 222 Endpoq.c(DE) Endpoeqa.c(C) ~C

is isomorphic to F' as both lax and oplax monoidal functor.

Fo(=)oG
ey

® Hence, I' is Frobenius monoidal.



I fgon Lifting to the center

Both adjunctions F' 4 G and G - F' also have a left projection formula
morphism, 1proj® respectively lproj’.

Theorem (F.-L.—P.)

Assume given an ambiadjunction F' 4 G - F with G strong monoidal. If

rproj§ y = (rproj% 4)~! and Iproj% 4, = (Iprojj x)=!

are mutual inverses, then Z(F): Z(D) — Z(C) is a braided Frobenius
monoidal functor.

.

e Z(F) has the same lax and oplax monoidal structures as F'

® Proof sketch: Assumptions <= F' - G - F' lifts to an ambiadjunction
of C-bimodule categories between

G:C—DC and F: D¢ = C



) g

Nengham | | jfting to the center

Proof sketch (continued):

e |f the projection formulas hold for the monoidal adjunction G 4 R, then
Z(R) is a braided lax monoidal functor.

Dually, if the projection formulas hold for the opmonoidal adjunction
L 4G, then Z(L) is a braided oplax monoidal functor.

The functors Z(R) and Z(L) are different, in general, even when R = L
as functors.

The half braidings are different:

rproj§ x X 0j% 1

Z(R)(X,¢) = (R(X), ciX = (RX 2 A P pox @A) B, paag x) B g RX)
rprojk X (& X

Z(L)(X,0) = (L(X), k¥ = (LX oA TR v g Gy K, A x) B 4 Lx)

Thus, for = R =L, Z(R) and Z(L) coincide when

rprojff x = (rproj% 4)~! and Iproj¥ 4 = (Iproj% x)~".
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® o: K < H an inclusion of Hopf algebras:

Res Res
. . — —
® Adjunctions: g Nod L K-Mod, H-Mod T K-Mod
~_ S~
Colnd Ind
[ ]

The projection formula always hold for Ind. If H is finitely-generated
projective as a K-module, then the projection formulas hold for Colnd.

K C H is a Frobenius extension if there exists a Frobenius morphism
tr: H — K sit. H=Homg(H, K) = Colnd(K), 1+ tr,
see e.g. [Fischmann—Montgomery—Schneider '97].

If K C H is a Frobenius extension then Ind = Colnd and we have an
ambiadjunction Ind 4 Res - Ind.
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Theorem (F.-L.—P.)

If H C K is a Frobenius extension of Hopf algebras such the Frobenius
morphism tr: H — K is a morphism of

(i) right H-comodules

(ii) right and left H-comodules

then

(i) F: K-Mod — H-Mod is a Frobenius monoidal functor

(i) Z(F): Z(K-Mod) — Z(H-Mod) is a braided Frobenius monoidal
functor.

® (i) holds for all Frobenius extensions we know.

e (ii) needs relative unimodularity, e.g. semisimplicity of H.



I fgon Hopf algebra extensions

e Recall: Z(H-Mod) ~ #YD — Yetter-Drinfeld modules over H.
® Objects: H-modules V' with a coaction 6" (v) = v(=Y ® v(® such that
5V(h . U) = h(l)v(_l)S(h(g)) & h(g) . 1}(0),
where A(h) = h(1) ® h(y) is the coproduct.
® The functor Z(F) is given by
Z(F)(V,6V) = (FV =Tnd(V) = H ® V, 67V),
5Fv(h & ’U) = h(l)v(l)S(h(g)) ® (h(g) ® U(O)).

e Condition (i) holds for large classes of Frobenius extensions of Hopf
algebras, (ii) is more special. First examples:
® For kH C kG group algebras, (ii) holds.
® For k C H, H finite-dimensional, (i) holds. (ii) is equivalent to H* being
unimodular.
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e Consider the small quantum group u.(sly) for € a primitive ¢-th root of
unity €. The Cartan part is the group algebra kC,. The extension
kCy C u(sly) satisfies (i) but not (ii). Hence
Ind: kC,-Mod — u.(slz)-Mod
is a Frobenius monoidal functor but does not extend to Drinfeld centers.
® The (Kac-De Concini) quantum group U,(g) contains a large
commutative Hopf subalgebra Z = k[EY, Ff, K:*], the algebra of
functions Oy of an algebraic group H. The inclusion Z C U,(g) satisfies
(i) but not (ii). = Frobenius monoidal functor

Ind: QCoh(H/adH) — U:(g)-Mod
® |n both cases, we still have /ax and oplax monoidal functors on the center.

e |f H is a finite-dimensional semisimple and co-semisimple Hopf algebra ,
then any extension of Hopf algebras K C H satisfies (ii).
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... Thank you for your attention!
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