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SUMMARY
I We construct non-semisimple modular tensor categories ZB(C)

I B is a braided category, e.g. B = H–mod
— H a quasi-triangular Hopf algebra

I C is a finite tensor category with a central functor Brev → C
I ZB(C) is the relative center of C

I Examples:
I For B a Hopf algebra object in H–mod,

ZB(H–mod(B)) ' DrinH(B)–mod,

where DrinH(B) is the relative Drinfeld double
I For A commutative algebra in ZB(C),

ZB(RepC(A)) ∼= Reploc
ZB(C)(A),

the category of local A-modules.
I Joint work with C. Walton (Rice) ArXiv:2010.11872,

ArXiv:2202.08644
I Joint work in progress with G. Sanmarco (Iowa), and

A. Ros Camacho, S. Hannah (Cardiff)
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MOTIVATION
Modular tensor categories
I . . . are algebraic structure used in the construction of the

Reshetikhin–Turaev 3D topological field theory
I . . . capture the structure of 2D conformal field theory
I . . . are are typically semisimple
I Recent advances, non-semisimple modular categories:

I Equivalent characterizations of modularity [Shi19]
I Non-semisimple 3-manifold invariants [DRGG+19], . . .
I Modular functor valued in chain complexes [SW21]

I Key example: uq(g)–mod, qN = 1 with N odd, is
non-semisimple modular (Reshetikhin–Turaev take a
semisimple quotient category)

I Other examples: Lentner–Ohrmann (2016),
Gainutdinov–Lentner–Ohrmann (2018), Negron (2018)

I Our goal: Construction of non-semisimple modular
categories using representation theory
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MODULAR CATEGORIES

A modular category C is:
I a k-linear1 finite abelian category

— finite dimensional Hom spaces, finitely many simple objects

I a tensor category
— tensor product ⊗, unit 1, End(1) = k, left and right duals ∗V,V∗

I equipped with a braiding ΨV,W : V ⊗W ∼−→W ⊗ V

ΨV,W⊗U = (Id⊗ΨV,U)(ΨV,W ⊗ Id)
ΨV⊗W,U = (ΨV,U ⊗ Id)(Id⊗ΨW,U)

=⇒ =

I a ribbon category — natural isomorphisms
∗V ∼−→ V∗ s.t. left and right twists coincide

=

I non-degenerate — (∀W ∈ C : ΨW,VΨV,W = Id) =⇒ V ∼= 1
⊕k

1Assume k = k throughout
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THE MONOIDAL/DRINFELD CENTER Z(C)
Z(C) consists of:
I Objects: (V, c), V ∈ C, half-braiding cW : V ⊗W →W ⊗ V,

natural in W, s.t.

cW⊗U = (IdW ⊗cU)(cW ⊗ IdU)

=⇒ ΨV,W = cV,W gives a braiding

I Morphisms: morphisms in C which commute with the
half-braidings

Theorem (Drinfeld, Majid, Joyal–Street ∼1990)

For C a tensor category, Z(C) is a braided tensor category
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EXAMPLES

C = H–mod — H (finite-dimensional) k-Hopf algebra
=⇒ C is a tensor category, with ⊗ via coproduct ∆: H→ H ⊗k H
Question: What is the center Z(C) in this case?
Answer: Modules over the Drinfeld double Drin(H)

Drin(H)
k
= H ⊗k H∗ with H,H∗ Hopf subalgebras.

Example ((Twisted) group case)

Take H = kG a group algebra. Then Drin(G)
k
= kG⊗ k[G],

gδh = δghg−1g, ∀g, h ∈ G.

More generally, include a 3-cocycle ω on the group: Drinω(G)
and Drinω(G)–mod ' Z(vectωG)

Drinω(G)–mod are modular categories, semisimple if char k = 0.
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QUANTUM GROUPS

Let qN = 1, an odd root of unity, g a semisimple Lie algebra.2

uq(g) = uq(n−)⊗ uq(t)⊗ uq(n+)

g — semisimple Lie algebra n± — nilpotent parts t — Cartan part

Theorem (Drinfeld/Lusztig)

The quantum group uq(g) is a quotient of the Drinfeld double
Drin(uq(b−)) of its Borel part uq(b−).

Drin(uq(b−)) is defined on uq(n−)⊗ uq(t)⊗ uq(t)
∗ ⊗ uq(n+)

=⇒ Z(uq(b−)–mod) ' Drin(uq(b−))–mod is too large

Alternative: Use a relative version ZB(C) of the monoidal center.

2N coprime to 3 if G2-type
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BRAIDED HOPF ALGEBRAS

Idea: Take the Drinfeld double of uq(n−) ⊆ uq(b−)

Problem: uq(n−) is not a Hopf algebra in vectk
Solution: uq(n−) is a braided Hopf algebra in vectΛ

k

vectΛ
k : Λ-graded vector spaces (Λ = (ZN)rank g) with braiding

ΨV,W(v⊗ w) = qdeg(v) deg(w)w⊗ v, qN = 1

Bialgebra condition involves braiding

=

B B B B

B BB B
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THE RELATIVE MONOIDAL CENTER
Assumption: C is B-central, i.e. comes with a tensor functor

Brev ↪→ Z(C)

that is faithful and preserves the braiding Ψrev
V,W = Ψ−1

W,V.

Note: Using the forgetful tensor functor Z(C)→ C, a B-central
structure gives a tensor functor B → C together with
⊗-compatible isomorphisms

σV,B : V ⊗ B ∼−→ B⊗ V, ∀B ∈ B,V ∈ C.

Definition
ZB(C) is the full subcategory of Z(C) on objects (V, c) where

cV,B = σV,B, ∀B ∈ B,V ∈ C.



MOTIVATION THE RELATIVE CENTER MAIN RESULTS EXAMPLES LOCAL MODULES REFERENCES

QUANTUM GROUPS EXAMPLE

Proposition (Majid, L.)

Consider

B = vectΛ
k , C = uq(n−)–mod(B),

Brev ↪→ C, B 7→ B with trivial uq(n−)-action via ε.

Then ZB(C) is equivalent to uq(g)–mod.

More generally: B a braided Hopf algebra in H–mod,
B = H–mod and C = B–mod(B) then

ZB(C) ' DrinH(B)–mod,

a braided version of the Drinfeld double defined on B∗ ⊗H ⊗ B
[Majid’s double bosonization], satisfying Drink(B o H)� DrinH(B).
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MODULARITY OF THE CENTER

Let C be a finite tensor category. There is a distinguished invertible
object D such that D⊗D∗ ∼= 1 and a natural isomorphism

ξV : D⊗ V ∼−→ V∗∗∗∗ ⊗D

called the Radford isomorphism.

Theorem (Etingof–Nikshych–Ostrik, Shimizu [Shi18])

(i) The center Z(C) is non-degenerate finite tensor category.
(ii) Ribbon structures on Z(C) are in bijection with the set

Sqrt(D, ξ) = {(V, σV) |V∗∗ ⊗ V ∼= D, σ∗∗V σV ∼= ξV }

Hence Sqrt(D, ξ) 6= ∅ =⇒Z(C) is a modular tensor category.



MOTIVATION THE RELATIVE CENTER MAIN RESULTS EXAMPLES LOCAL MODULES REFERENCES

MODULARITY OF THE CENTER
I In the semisimple case Müger (2001) proved that Z(C) is

modular fusion provided C is (trace) spherical, i.e. for any
s : X→ X

trl(s) = s s= = trr(s).

I Kauffman–Radford (1991) parametrized ribbon structures
on Drin(H)–mod for a fin. dim. Hopf algebra H by the set{

(ζ, a) ∈ G(H∗)× G(H)
∣∣ ζ2 = αH, a2 = gH

}
,

gH ∈ G(H) and αH∗ ∈ G(H∗) are the distinguished grouplikes.

In this case, D = k〈d〉, with h · d = α−1
H (h)d, and ξ

corresponds to action with gH, using Radford’s formula (1976)

S4(h) = α−1
H (h(1))gHh(2)g

−1
H αH(h(3)), ∆(h) = h(1) ⊗ h(2).
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MODULARITY OF RELATIVE CENTERS

Theorem (Shimizu [Shi19] B = vectk, L.–Walton [LW21])

Let B be a non-degenerate braided tensor category, C a B-central tensor
category such that the full image of B is a topologizing subcategory
satisfy Sqrt(D, ξ) 6= ∅.
Then ZB(C) is a modular tensor category.

I A topologizing subcategory is a full subcategory closed under
subquotients.

I The condition for ribbon structures is the same as for Z(C). The
relative center inherits its ribbon structure.

I For non-degeneracy we prove and apply a more general result:
For the Müger centralizer of a topologizing tensor subcategory S,

CentC(S) = {X ∈ C |ΨV,XΨX,V = IdX⊗V,∀V ∈ S}
If C and S are non-degenerate then so is CentC(S).

I The relative center is the Müger centralizer CentZ(C)(ImgBrev).
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COROLLARIES

Corollary (L.–Walton [LW21])

Under the assumptions of the theorem, there is a braided equivalence of
ribbon categories

Z(C) ' Brev � ZB(C).

The following special case is of particular interest:

Definition (Douglas–Schommer-Pries–Snyder, 2013)

A tensor category with a pivotal structure jX : X ∼−→ X∗∗ is
spherical if D ∼= 1 and j∗∗X jX = ξX.

Corollary (Shimizu [Shi19] B = vectk, L.–Walton [LW21])

Let C be a B-central spherical tensor category such that the full image
of B is a topologizing subcategory.
If B is non-degenerate, then ZB(C) is modular.
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NICHOLS ALGEBRA EXAMPLES

Rich class of braided Hopf algebras, Nichols algebras:
braided Hopf algebras determined by pairs (V, c)
I V = C〈x1, . . . , xr〉 a f.d. C-vector space
I c(xi ⊗ xj) = qijxj ⊗ xi, qij ∈ C× roots of unity.
I The scalars q = (qij) determine a braiding on Bq = vectΛ

k for
a finitely generated abelian group Λ = 〈g1, . . . , gr〉.

The tensor algebra Tq(V) =
⊕

n≥0 V⊗n becomes an
(infinite-dimensional) Hopf algebra in Bq by uniquely extending

∆(xi) = xi ⊗ 1 + 1⊗ xi

to give a coproduct. E.g.,

∆(xixj) = xixj ⊗ 1 + xi ⊗ xj + qijxj ⊗ xi + 1⊗ xixj,

deg(xi) = gi, deg(xj) = gj.
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NICHOLS ALGEBRA EXAMPLES

Definition
The Nichols algebra Bq(V) is the maximal quotient of Tq(V) that
is still a Z-graded Hopf algebra in vectΛ

k by an ideal generated in
degrees ≥ 2.

Example: uq(n−) is a Nichols algebra, for qij = qaij

I The Nichols algebras studied here are called diagonal type
and finite-dimensional examples have been classified
completely in terms of generalized Dynkin diagrams

qii qjj

qijqji

no edge if
qijqji = 1

[Heckenberger, 2009]

I Vast supply of examples generalizing uq(n−)
— super type, modular type, UFO type,...
governed by a Weyl groupoid action



MOTIVATION THE RELATIVE CENTER MAIN RESULTS EXAMPLES LOCAL MODULES REFERENCES

NICHOLS ALGEBRA EXAMPLES

I We identified numerical conditions on the scalars q = (qij)
under which DrinC[Λ](B(V))–mod is a modular tensor
category.

I Similarly, under certain conditions B(V) oC[Λ]–mod is a
non-semisimple spherical category.

I As a special case, uq(g)–mod is a modular category
(orginally due to Lyubashenko, 1995).

I However, uq(b−)–mod is not non-semisimple spherical.

I Next slide: An example of super type that gives a
non-semisimple spherical structure.
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EXAMPLES BEYOND uq(g)

Consider the generalized Dynkin diagram of super type A(1|1):

−1 −1

q
, q — a primitive 2n-th root of unity.

The Hopf algebra U2 := DrinC[Λ](B(V)) is generated by xi, yi,
and ki (for i = 1, 2) subject to relations, for i, j = 1, 2, i 6= j,

kixi = qxiki, kiyi = q−1yiki, kixj = xjki, kiyj = yjki,

yixi + xiyi = δi,j(1− ki), y1x2 = x2y1, y2x1 = qx1y2,

x2
i = y2

i = 0, k2n
i = 1, (x1x2)2n + (x2x1)2n = (y1y2)2n + (y2y1)2n = 0,

∆(x1) = x1 ⊗ 1 + kn
1 ⊗ x1, ∆(x2) = x2 ⊗ 1 + kn

2k1 ⊗ x2,

∆(y1) = y1 ⊗ 1 + kn
1k2 ⊗ y1, ∆(y2) = y2 ⊗ 1 + kn

2 ⊗ y2.
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EXAMPLES BEYOND uq(g)

Proposition (L.–Walton)

The category B(V) oC[Λ]–mod is non-semisimple spherical in the
previous example. Hence, U2–mod is a modular tensor category.

I Joint work in progress with G. Sanmarco: U2 is part of a
family U2r of Hopf algebras such that U2r–mod is modular
based on a spherical structure of the bosonization of the
Nichols algebra — of super type A(r|r).

−1 −1 −1 −1 −1 −1
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I There 2r other ribbon structures on Drin(B(V) oC[Λ]) not
coming from spherical structures, descending to the same
one on the quotient U2r.

I These are the only* super A type examples of Nichols
algebras admitting spherical structures after bosonization.
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LOCAL MODULES OVER BRAIDED COMMUTATIVE

ALGEBRAS

I C — a finite ribbon category (braiding Ψ)
I A — a commutative algebra in C — mΨA,A = m
I RepC(A) = (A–mod,⊗A) is a finite tensor category

Theorem (Pareigis)

A module (V, aV : A⊗ V → V) in RepC(A) is local if

aVcA,V = aVc−1
A,V.

The full subcategory Reploc
C (A) of local modules is braided with

braiding ΨV,W : V ⊗A W →W ⊗A V induced from C.
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MODULARITY OF LOCAL MODULES

Theorem (Kirillov–Ostrik [KO02], L.–Walton)

Let C be a modular category and A a rigid Frobenius algebra in C.
Then Reploc

C (A) is a modular category

I The case when C is semisimple is due to Kirillov–Ostrik
I We define a rigid Frobenius algebra A to be a commutative,

connected, special Frobenius algebra
I ⇔ connected étale algebra (i.e., commutative and separable) A

with dimC A 6= 0 and trivial twist
I Recovers the rigid C-algebras of Kirillov–Ostrik

I Examples: Davydov’s classification of connected étale
algebras in Z(kG–mod), G a finite group, extends to
arbitrary characteristic

I Classification of rigid Frobenius algebras in Z(vectωG), joint
with A. Ros Camacho, S. Hannah (Cardiff), forthcoming
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LOCAL MODULES AND RELATIVE CENTERS
I C — B-central finite tensor category
I (A, cA) — an algebras in ZB(C)
I Use the half-braiding cA to make RepC(A) a B-central tensor

category

Theorem (Schauenburg [Sch01] B = vectk, L.–Walton
[LW20])

Assume that B is non-degenerate, Sqrt(D, ξ) 6= ∅, and A is rigid
Frobenius.
There is an equivalence of modular categories

ZB(RepC(A)) ∼= Reploc
ZB(C)(A).

This result generalizes a theorem of Schauenburg [Sch01] to the
relative setup.
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Thank you very much for your attention!
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