

Relative Drinfeld centers and non-semisimple modular tensor categories

ROBERT LAUGWITZ — UNIVERSITY OF NOTTINGHAM

Universal Quantum Symmetries Lectures (UQSL) November 8, 2022

MOTIVATION	THE RELATIVE CENTER	MAIN RESULTS	EXAMPLES	LOCAL MODULES	References
00	000000	0000	00000	0000	

SUMMARY

• We construct non-semisimple *modular tensor categories* $Z_{\mathcal{B}}(\mathcal{C})$

- \mathcal{B} is a braided category, e.g. $\mathcal{B} = H$ -mod
 - -H a quasi-triangular Hopf algebra
- C is a finite tensor category with a *central functor* $\mathcal{B}^{rev} \to C$
- $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ is the *relative center* of \mathcal{C}
- ► Examples:
 - ► For *B* a Hopf algebra object in *H*-**mod**,

 $\mathcal{Z}_{\mathcal{B}}(H-\mathbf{mod}(\mathcal{B})) \simeq \mathrm{Drin}_{H}(B)-\mathbf{mod},$

where $Drin_H(B)$ is the *relative Drinfeld double*

• For *A* commutative algebra in $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$,

$$\mathcal{Z}_{\mathcal{B}}(\operatorname{Rep}_{\mathcal{C}}(A)) \cong \operatorname{Rep}_{\mathcal{Z}_{\mathcal{B}}(\mathcal{C})}^{\operatorname{loc}}(A),$$

the category of *local A-modules*.

- Joint work with C. Walton (Rice) ArXiv:2010.11872, ArXiv:2202.08644
- ► Joint work in progress with G. Sanmarco (Iowa), and A. Ros Camacho, S. Hannah (Cardiff)

MOTIVATION	THE RELATIVE CENTER	MAIN RESULTS	EXAMPLES	Local Modules	References
00	000000	0000	00000	0000	

CONTENTS

MOTIVATION

THE RELATIVE CENTER

MAIN RESULTS

EXAMPLES

LOCAL MODULES

MOTIVATION	THE RELATIVE CENTER	MAIN RESULTS	EXAMPLES	LOCAL MODULES	References
•0	000000	0000	00000	0000	

MOTIVATION

Modular tensor categories

- ... are algebraic structure used in the construction of the Reshetikhin–Turaev 3D *topological field theory*
- ... capture the structure of 2D *conformal field theory*
- ► ... are are typically *semisimple*
- ► Recent advances, *non-semisimple* modular categories:
 - Equivalent characterizations of modularity [Shi19]
 - ▶ Non-semisimple 3-manifold invariants [DRGG⁺19], ...
 - Modular functor valued in chain complexes [SW21]
- Key example: u_q(g)-mod, q^N = 1 with N odd, is non-semisimple modular (Reshetikhin–Turaev take a semisimple quotient category)
- Other examples: Lentner–Ohrmann (2016), Gainutdinov–Lentner–Ohrmann (2018), Negron (2018)
- Our goal: Construction of non-semisimple modular categories using representation theory

MODULAR CATEGORIES

- A modular category C is:
 - ► a k-linear¹ *finite abelian category*
 - finite dimensional Hom spaces, finitely many simple objects
 - ► a tensor category
 - tensor product \otimes , unit 1, End(1) = k, left and right *duals* $*V, V^*$
 - equipped with a *braiding* $\Psi_{V,W}$: $V \otimes W \xrightarrow{\sim} W \otimes V$

$$\begin{array}{lll} \Psi_{V,W\otimes U} = (\mathrm{Id}\otimes \Psi_{V,U})(\Psi_{V,W}\otimes \mathrm{Id}) \\ \Psi_{V\otimes W,U} = (\Psi_{V,U}\otimes \mathrm{Id})(\mathrm{Id}\otimes \Psi_{W,U}) \end{array} \implies \qquad \Longrightarrow \qquad \Longrightarrow \qquad \Longrightarrow \qquad \end{array}$$

- a *ribbon category* natural isomorphisms * $V \xrightarrow{\sim} V^*$ s.t. left and right *twists* coincide
- non-degenerate $(\forall W \in \mathcal{C} : \Psi_{W,V}\Psi_{V,W} = \mathrm{Id}) \Longrightarrow V \cong \mathbb{1}^{\oplus k}$

¹Assume $\Bbbk = \overline{\Bbbk}$ throughout

MOTIVATION THE RELATIVE CENTER MAIN RESULTS EXAMPLES LOCAL MODULES REFERENCES 0000 0000 REFERENCES

The Monoidal/Drinfeld Center $\mathcal{Z}(\mathcal{C})$

 $\mathcal{Z}(\mathcal{C})$ consists of:

▶ Objects: (V, c), $V \in C$, half-braiding c_W : $V \otimes W \to W \otimes V$, natural in W, s.t.

$$c_{W \otimes U} = (\mathrm{Id}_W \otimes c_U)(c_W \otimes \mathrm{Id}_U)$$
$$\implies \Psi_{V,W} = c_{V,W} \quad \text{gives a braiding}$$

► Morphisms: morphisms in *C* which commute with the half-braidings

Theorem (Drinfeld, Majid, Joyal–Street ~1990)

For C a tensor category, Z(C) is a braided tensor category

Motivation 00	THE RELATIVE CENTER 00000	Main Results 0000	Examples 00000	Local Modules 0000	References

EXAMPLES

- C = H-**mod** H (finite-dimensional) k-Hopf algebra
- $\Longrightarrow \mathcal{C}$ is a tensor category, with \otimes via *coproduct* $\Delta \colon H \to H \otimes_{\Bbbk} H$

Question: What is the center $\mathcal{Z}(\mathcal{C})$ in this case?

Answer: Modules over the Drinfeld double Drin(H)

 $Drin(H) \stackrel{\Bbbk}{=} H \otimes_{\Bbbk} H^*$ with H, H^* Hopf subalgebras.

Example ((Twisted) group case)

Take $H = \Bbbk G$ a group algebra. Then $Drin(G) \stackrel{\Bbbk}{=} \Bbbk G \otimes \Bbbk[G]$,

$$g\delta_h = \delta_{ghg^{-1}}g, \qquad \forall g, h \in G.$$

More generally, include a 3-cocycle ω on the group: $\text{Drin}^{\omega}(G)$ and $\text{Drin}^{\omega}(G)$ -**mod** $\simeq \mathcal{Z}(\mathbf{vect}_G^{\omega})$

 $Drin^{\omega}(G)$ –mod are *modular categories*, semisimple if char $\Bbbk = 0$.

QUANTUM GROUPS

Let $q^N = 1$, an odd root of unity, g a semisimple Lie algebra.²

 $\mathrm{u}_q(\mathfrak{g}) = \mathrm{u}_q(\mathfrak{n}_-) \otimes \mathrm{u}_q(\mathfrak{t}) \otimes \mathrm{u}_q(\mathfrak{n}_+)$

 \mathfrak{g} — semisimple Lie algebra \mathfrak{n}_{\pm} — nilpotent parts \mathfrak{t} — Cartan part

Theorem (Drinfeld/Lusztig)

The quantum group $u_q(\mathfrak{g})$ is a quotient of the Drinfeld double $Drin(u_q(\mathfrak{b}_-))$ of its Borel part $u_q(\mathfrak{b}_-)$.

 $Drin(\mathfrak{u}_q(\mathfrak{b}_-))$ is defined on $\mathfrak{u}_q(\mathfrak{n}_-) \otimes \mathfrak{u}_q(\mathfrak{t}) \otimes \mathfrak{u}_q(\mathfrak{t})^* \otimes \mathfrak{u}_q(\mathfrak{n}_+)$

 $\implies \mathcal{Z}(\mathbf{u}_q(\mathbf{b}_-)-\mathbf{mod}) \simeq \operatorname{Drin}(\mathbf{u}_q(\mathbf{b}_-))-\mathbf{mod} \text{ is too large}$

Alternative: Use a relative version $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ of the monoidal center.

 $^{^{2}}N$ coprime to 3 if G_{2} -type

BRAIDED HOPF ALGEBRAS

Idea: Take the Drinfeld double of $u_q(\mathfrak{n}_-) \subseteq u_q(\mathfrak{b}_-)$

Problem: $u_q(\mathfrak{n}_-)$ is *not* a Hopf algebra in **vect**_k Solution: $u_q(\mathfrak{n}_-)$ is a *braided* Hopf algebra in **vect**_k^{\Lambda}

 $\operatorname{vect}_{\Bbbk}^{\Lambda}$: Λ -graded vector spaces ($\Lambda = (\mathbb{Z}_N)^{\operatorname{rank} \mathfrak{g}}$) with braiding

$$\Psi_{V,W}(v\otimes w) = q^{\deg(v)\deg(w)}w\otimes v, \qquad q^N = 1$$

Bialgebra condition involves braiding

THE RELATIVE MONOIDAL CENTER

Assumption: C is B-central, i.e. comes with a tensor functor

 $\mathcal{B}^{rev} \hookrightarrow \mathcal{Z}(\mathcal{C})$

that is faithful and preserves the braiding $\Psi_{V,W}^{\text{rev}} = \Psi_{W,V}^{-1}$.

Note: Using the forgetful tensor functor $\mathcal{Z}(\mathcal{C}) \to \mathcal{C}$, a \mathcal{B} -central structure gives a tensor functor $\mathcal{B} \to \mathcal{C}$ together with \otimes -compatible isomorphisms

$$\sigma_{V,B} \colon V \otimes B \xrightarrow{\sim} B \otimes V, \qquad \forall B \in \mathcal{B}, V \in \mathcal{C}.$$

Definition

 $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ is the full subcategory of $\mathcal{Z}(\mathcal{C})$ on objects (V, c) where

$$c_{V,B} = \sigma_{V,B}, \quad \forall B \in \mathcal{B}, V \in \mathcal{C}.$$

MAIN RESULTS

OUANTUM GROUPS EXAMPLE

Proposition (Majid, L.)

Consider

$$\mathcal{B} = \mathbf{vect}_{\Bbbk}^{\Lambda}, \qquad \mathcal{C} = \mathbf{u}_q(\mathfrak{n}_-) - \mathbf{mod}(\mathcal{B}),$$

$$\mathcal{B}^{\mathrm{rev}} \hookrightarrow \mathcal{C}, \quad B \mapsto B \quad \text{with trivial } u_q(\mathfrak{n}_-) \text{-action via } \varepsilon.$$

Then $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ *is equivalent to* $\mathbf{u}_{q}(\mathfrak{g})$ –**mod**.

More generally: B a braided Hopf algebra in H–mod, $\mathcal{B} = H$ -mod and $\mathcal{C} = B$ -mod(\mathcal{B}) then

 $\mathcal{Z}_{\mathcal{B}}(\mathcal{C}) \simeq \mathrm{Drin}_{\mathcal{H}}(\mathcal{B}) - \mathbf{mod},$

a *braided* version of the Drinfeld double defined on $B^* \otimes H \otimes B$ [Majid's *double bosonization*], satisfying $\text{Drin}_{\Bbbk}(B \rtimes H) \twoheadrightarrow \text{Drin}_{H}(B)$.

MODULARITY OF THE CENTER

Let *C* be a finite tensor category. There is a *distinguished invertible object D* such that $D \otimes D^* \cong 1$ and a natural isomorphism

$$\xi_V \colon D \otimes V \xrightarrow{\sim} V^{****} \otimes D$$

called the Radford isomorphism.

Theorem (Etingof-Nikshych-Ostrik, Shimizu [Shi18])

(i) The center Z(C) is non-degenerate finite tensor category.
(ii) Ribbon structures on Z(C) are in bijection with the set Sqrt(D, ξ) = {(V, σ_V) |V^{**} ⊗ V ≅ D, σ^{**}_V σ_V ≅ ξ_V } Hence Sqrt(D, ξ) ≠ Ø ⇒ Z(C) is a modular tensor category.

MODULARITY OF THE CENTER

► In the *semisimple* case Müger (2001) proved that Z(C) is modular fusion provided C is (*trace*) *spherical*, i.e. for any $s: X \to X$

$$\operatorname{tr}^{l}(s) = (s) = (s) = \operatorname{tr}^{r}(s).$$

► Kauffman–Radford (1991) parametrized ribbon structures on Drin(*H*)–mod for a fin. dim. Hopf algebra *H* by the set

$$\left\{ \left(\zeta,a\right)\in G(H^*)\times G(H)\,\big|\,\zeta^2=\alpha_H,a^2=g_H\right\},\,$$

 $g_H \in G(H)$ and $\alpha_{H^*} \in G(H^*)$ are the *distinguished grouplikes*. In this case, $D = \Bbbk \langle d \rangle$, with $h \cdot d = \alpha_H^{-1}(h)d$, and ξ corresponds to action with g_H , using *Radford's formula* (1976)

$$S^{4}(h) = \alpha_{H}^{-1}(h_{(1)})g_{H}h_{(2)}g_{H}^{-1}\alpha_{H}(h_{(3)}), \qquad \Delta(h) = h_{(1)} \otimes h_{(2)}.$$

MODULARITY OF RELATIVE CENTERS

Theorem (Shimizu [Shi19] $\mathcal{B} = \mathbf{vect}_{\Bbbk}$, L.–Walton [LW21])

Let \mathcal{B} be a non-degenerate braided tensor category, \mathcal{C} a \mathcal{B} -central tensor category such that the full image of \mathcal{B} is a topologizing subcategory satisfy $\operatorname{Sqrt}(D, \xi) \neq \emptyset$. Then $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ is a modular tensor category.

- A *topologizing subcategory* is a full subcategory closed under subquotients.
- ► The condition for ribbon structures is the same as for *Z*(*C*). The relative center inherits its ribbon structure.
- For non-degeneracy we prove and apply a more general result: For the *Müger centralizer* of a topologizing tensor subcategory *S*,

 $\operatorname{Cent}_{\mathcal{C}}(\mathcal{S}) = \{ X \in \mathcal{C} \, | \, \Psi_{V,X} \Psi_{X,V} = \operatorname{Id}_{X \otimes V}, \forall V \in \mathcal{S} \}$

If C and S are non-degenerate then so is $Cent_{C}(S)$.

• The relative center is the Müger centralizer $\operatorname{Cent}_{\mathcal{Z}(\mathcal{C})}(\operatorname{Img} \mathcal{B}^{\operatorname{rev}})$.

MOTIVATION	THE RELATIVE CENTER	MAIN RESULTS	EXAMPLES	LOCAL MODULES	References
00	000000	0000	00000	0000	

COROLLARIES

Corollary (L.-Walton [LW21])

Under the assumptions of the theorem, there is a braided equivalence of ribbon categories

$$\mathcal{Z}(\mathcal{C}) \simeq \mathcal{B}^{\mathrm{rev}} \boxtimes \mathcal{Z}_{\mathcal{B}}(\mathcal{C}).$$

The following special case is of particular interest:

Definition (Douglas-Schommer-Pries-Snyder, 2013)

A tensor category with a pivotal structure $j_X \colon X \xrightarrow{\sim} X^{**}$ is *spherical* if $D \cong 1$ and $j_X^{**}j_X = \xi_X$.

Corollary (Shimizu [Shi19] $\mathcal{B} = \mathbf{vect}_{\Bbbk}$, L.–Walton [LW21])

Let *C* be a *B*-central spherical tensor category such that the full image of *B* is a topologizing subcategory. If *B* is non-degenerate, then $Z_B(C)$ is modular.

NICHOLS ALGEBRA EXAMPLES

Rich class of braided Hopf algebras, Nichols algebras: *braided* Hopf algebras determined by pairs (V, c)

- $V = \mathbb{C}\langle x_1, \ldots, x_r \rangle$ a f.d. \mathbb{C} -vector space
- ► $c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$, $q_{ij} \in \mathbb{C}^{\times}$ roots of unity.
- ► The scalars $\mathbf{q} = (q_{ij})$ determine a braiding on $\mathcal{B}_{\mathbf{q}} = \mathbf{vect}_{\Bbbk}^{\Lambda}$ for a finitely generated abelian group $\Lambda = \langle g_1, \ldots, g_r \rangle$.

The tensor algebra $T_q(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ becomes an (infinite-dimensional) Hopf algebra in \mathcal{B}_q by uniquely extending

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i$$

to give a coproduct. E.g.,

$$\Delta(x_i x_j) = x_i x_j \otimes 1 + x_i \otimes x_j + q_{ij} x_j \otimes x_i + 1 \otimes x_i x_j,$$

 $\deg(x_i) = g_i, \deg(x_j) = g_j.$

NICHOLS ALGEBRA EXAMPLES

Definition

The *Nichols algebra* $\mathfrak{B}_{\mathbf{q}}(V)$ is the maximal quotient of $T_{\mathbf{q}}(V)$ that is still a \mathbb{Z} -graded Hopf algebra in **vect**^{Λ} by an ideal generated in degrees ≥ 2 .

Example: $u_q(\mathfrak{n}_-)$ is a Nichols algebra, for $q_{ij} = q^{a_{ij}}$

The Nichols algebras studied here are called *diagonal type* and finite-dimensional examples have been classified completely in terms of *generalized Dynkin diagrams*

$$q_{ii}$$
 q_{jj} no edge if [Heckenberger, 2009] $q_{ij}q_{ji}$ $q_{ij}q_{ji} = 1$

Vast supply of examples generalizing u_q(n₋)
 — super type, modular type, UFO type,...
 governed by a Weyl groupoid action

NICHOLS ALGEBRA EXAMPLES

- We identified numerical conditions on the scalars q = (q_{ij}) under which Drin_{ℂ[Λ]}(𝔅(V))−mod is a *modular tensor category*.
- ► Similarly, under certain conditions 𝔅(V) ⋊ ℂ[Λ]−mod is a non-semisimple *spherical category*.
- ► As a special case, u_q(g)-mod is a modular category (orginally due to Lyubashenko, 1995).
- However, $u_q(b_-)$ –**mod** is *not* non-semisimple spherical.
- Next slide: An example of super type that gives a non-semisimple spherical structure.

EXAMPLES BEYOND $\mathbf{u}_q(\mathfrak{g})$

Consider the generalized Dynkin diagram of super type A(1|1):

$$\bigcirc -1 \qquad -1 \qquad 0$$
, q — a primitive 2*n*-th root of unity.

The Hopf algebra $U_2 := \text{Drin}_{\mathbb{C}[\Lambda]}(\mathfrak{B}(V))$ is generated by x_i, y_i , and k_i (for i = 1, 2) subject to relations, for $i, j = 1, 2, i \neq j$,

$$\begin{split} k_i x_i &= q x_i k_i, \qquad k_i y_i = q^{-1} y_i k_i, \qquad k_i x_j = x_j k_i, \qquad k_i y_j = y_j k_i, \\ y_i x_i + x_i y_i &= \delta_{i,j} (1 - k_i), \qquad y_1 x_2 = x_2 y_1, \qquad y_2 x_1 = q x_1 y_2, \\ x_i^2 &= y_i^2 = 0, \qquad k_i^{2n} = 1, \qquad (x_1 x_2)^{2n} + (x_2 x_1)^{2n} = (y_1 y_2)^{2n} + (y_2 y_1)^{2n} = 0, \\ \Delta(x_1) &= x_1 \otimes 1 + k_1^n \otimes x_1, \qquad \Delta(x_2) = x_2 \otimes 1 + k_2^n k_1 \otimes x_2, \\ \Delta(y_1) &= y_1 \otimes 1 + k_1^n k_2 \otimes y_1, \qquad \Delta(y_2) = y_2 \otimes 1 + k_2^n \otimes y_2. \end{split}$$

EXAMPLES BEYOND $\mathbf{u}_q(\mathfrak{g})$

Proposition (L.-Walton)

The category $\mathfrak{B}(V) \rtimes \mathbb{C}[\Lambda]$ -mod is non-semisimple spherical in the previous example. Hence, U_2 -mod is a modular tensor category.

▶ Joint work in progress with G. Sanmarco: U₂ is part of a family U_{2r} of Hopf algebras such that U_{2r}-mod is *modular* based on a *spherical structure* of the bosonization of the Nichols algebra — of super type A(r|r).

- ► There 2^r other *ribbon structures* on Drin(𝔅(V) ⋊ ℂ[Λ]) *not* coming from spherical structures, descending to the same one on the quotient U_{2r}.
- These are the *only** super A type examples of Nichols algebras admitting spherical structures after bosonization.

MOTIVATION THE RELATIVE CENTER MAIN RESULTS EXAMPLES LOCAL MODULES REFERENCES 00 00000 00000 00000 00000 0000 0000

LOCAL MODULES OVER BRAIDED COMMUTATIVE ALGEBRAS

- C a finite ribbon category (braiding Ψ)
- A a commutative algebra in C $m\Psi_{A,A} = m$
- ▶ $\operatorname{Rep}_{\mathcal{C}}(A) = (A \operatorname{mod}, \otimes_A)$ is a finite tensor category

Theorem (Pareigis)

A module $(V, a_V \colon A \otimes V \to V)$ in $\operatorname{Rep}_{\mathcal{C}}(A)$ is local if

$$a_V c_{A,V} = a_V c_{A,V}^{-1}.$$

The full subcategory $\operatorname{Rep}_{\mathcal{C}}^{\operatorname{loc}}(A)$ of local modules is braided with braiding $\Psi_{V,W} \colon V \otimes_A W \to W \otimes_A V$ induced from \mathcal{C} .

 MOTIVATION
 THE RELATIVE CENTER
 MAIN RESULTS
 EXAMPLES
 Local Modules
 References

 00
 000000
 0000
 00000
 0●00

MODULARITY OF LOCAL MODULES

Theorem (Kirillov–Ostrik [KO02], L.–Walton)

Let C be a modular category and A a rigid Frobenius algebra in C. Then $\operatorname{Rep}_{C}^{\operatorname{loc}}(A)$ *is a modular category*

- The case when C is *semisimple* is due to Kirillov–Ostrik
- We define a rigid Frobenius algebra A to be a *commutative*, *connected*, *special* Frobenius algebra
 - \Leftrightarrow *connected étale algebra (i.e., commutative and separable) A* with dim_{*C*} *A* \neq 0 and trivial twist
 - ► Recovers the rigid *C*-algebras of Kirillov–Ostrik
- ► Examples: Davydov's classification of connected étale algebras in *Z*(k*G*-mod), *G* a finite group, extends to arbitrary characteristic
- ► Classification of rigid Frobenius algebras in Z(vect^ω_G), joint with A. Ros Camacho, S. Hannah (Cardiff), forthcoming

LOCAL MODULES AND RELATIVE CENTERS

- C B-central finite tensor category
- (A, c_A) an algebras in $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$
- ► Use the half-braiding c_A to make $\operatorname{Rep}_{\mathcal{C}}(A)$ a \mathcal{B} -central tensor category

Theorem (Schauenburg [Sch01] $\mathcal{B} = \mathbf{vect}_{\Bbbk}$, L.–Walton [LW20])

Assume that \mathcal{B} is non-degenerate, $Sqrt(D, \xi) \neq \emptyset$, and A is rigid *Frobenius*.

There is an equivalence of modular categories

$$\mathcal{Z}_{\mathcal{B}}(\operatorname{Rep}_{\mathcal{C}}(A)) \cong \operatorname{Rep}_{\mathcal{Z}_{\mathcal{B}}(\mathcal{C})}^{\operatorname{loc}}(A).$$

This result generalizes a theorem of Schauenburg [Sch01] to the relative setup.

MOTIVATION THE	E KELATIVE CENTER I	MAIN RESULTS	EXAMPLES	LOCAL MODULES	References
00 000	0000	0000	00000	0000	

Thank you very much for your attention!

MOTIVATION	THE RELATIVE CENTER	MAIN RESULTS	EXAMPLES	LOCAL MODULES	References
00	000000	0000	00000	0000	

Some references

- [DRGG⁺19] M. De Renzi, A. M Gainutdinov, N. Geer, B. Patureau-Mirand, and I. Runkel, 3-dimensional TQFTs from non-semisimple modular categories, arXiv:1912.02063 (2019).
 - [KO02] A. Kirillov Jr. and V. Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of sl₂ conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227.
 - [LW20] R. Laugwitz and C. Walton, *Constructing non-semisimple modular* categories with local modules, arXiv:2202.08644 (2020).
 - [LW21] _____, Constructing Non-Semisimple Modular Categories With Relative Monoidal Centers, IMRM (2021). rnab097.
 - [Sch01] P. Schauenburg, The monoidal center construction and bimodules, J. Pure Appl. Algebra 158 (2001), no. 2-3, 325–346.
 - [Shi18] K. Shimizu, *Ribbon structures of the Drinfeld center of a finite tensor category*, arXiv:1707.09691 (2018).
 - [Shi19] _____, Non-degeneracy conditions for braided finite tensor categories, Adv. Math. 355 (2019), 106778, 36.
 - [SW21] C. Schweigert and L. Woike, Homotopy coherent mapping class group actions and excision for Hochschild complexes of modular categories, Adv. Math. 386 (2021), Paper No. 107814, 55.