2-Representation Theory for Categorified Quantum Groups at Prime Roots of Unity

Robert Laugwitz Rutgers University

joint work with

Vanessa Miemietz University of East Anglia

November 4, 2017

2-REPRESENTATION THEORY 00000 *p*-DG 2-Representations

OUTLINE

References

CATEGORIFICATION

Vision (Crane–Frenkel, 1994): invariants of 3-manifolds \rightsquigarrow invariants of 4-manifolds

CATEGORIFICATION OF QUANTUM GROUPS

Quantum groups:

- $U_q(\mathfrak{g})$, *q*-deformation of $U(\mathfrak{g})$ (Drinfeld, Jimbo)
- small quantum group: u_q(g) finite-dimensional quotient, for *q* root of unity
- Categories U
 _q(g), u
 _q(g), objects are idempotents to ensure lattice grading (Lusztig)

Categorifications:

- ▶ at *generic q*: Khovanov–Lauda, Chuang–Rouquier, ...
- Khovanov homology, categorified Jones polynomial of links
- at *prime roots of unity*, $q^p = 1$:
 - ► Khovanov–Qi (2012), Elias–Qi (2013): small quantum groups u_q(sl₂)
 - ► Elias–Qi (2015): quantum group $\dot{U}_q(\mathfrak{sl}_2)$

Categorification of Quantum group for \mathfrak{sl}_2 (Lauda)

Categorification		Decategorification
Diagrammatic 2-category	\mapsto	$\dot{\mathrm{U}}_q(\mathfrak{sl}_2)$,
<i>U</i>		
objects $\mathbb{1}_{\lambda}, \lambda \in \mathbb{Z}$	\mapsto	idempotents 1_{λ}
indecomposable 1-morphisms		canonical basis
$\mathrm{F}^{(a)}\mathrm{E}^{(b)}\mathbbm{1}_{\lambda},\mathrm{E}^{(a)}\mathrm{F}^{(b)}\mathbbm{1}_{\lambda}$	\mapsto	$F^{(a)}E^{(b)}1_{\lambda}, E^{(a)}F^{(b)}1_{\lambda}$
$\lambda \leq b-a$		$\lambda \leq b - a$
2-Homs	\mapsto	relations
$\operatorname{End}_{\mathscr{U}}(\operatorname{E}^m \mathbb{1}_{\lambda}) \cong \operatorname{Sym} \otimes \operatorname{NH}_m$		
indecomposable 1-morphisms $\xrightarrow{\text{realized as}}$ indecomposable		
bimodules over nil-Hecke algebras NH_m		

ROOT AT UNITY CATEGORIFICATION

Crucial difference:

At q generic:

- ► $\dot{\mathrm{U}}_q(\mathfrak{sl}_2)$ is a $\mathbb{Z}[q, q^{-1}]$ -algebra
- *q*-action \longleftrightarrow grading shift functors

At prime root of 1:

- u
 _q(sl₂) algebra over ℤ[q, q⁻¹]/(1 + q + q² + ... + q^{p-1}) cyclotomic integers
 - → categorified: stable category of (graded) *H*-mod (Khovanov, 2005)
- *H* = k[∂]/(∂^p) Hopf algebra in char k = p
 → (graded) algebras with *p*-differentials:
 p-dg algebras

CATEGORIFICATION OF QUANTUM GROUPS AT ROOTS OF UNITY

Khovanov 2005: **stable category** of *H*-mod, $H = \mathbb{k}[\partial]/(\partial^p)$ categorifies $\mathbb{Z}[q]/(1 + q + \ldots + q^{p-1})$

→ Hopfological Algebra, study of stable categories of p-dg modules over a p-dg algebra

Theorem (Elias–Qi, 2013)

The diagrammatic category $\mathscr{U} = \bigoplus_{\lambda,\mu\in\mathbb{Z}} \mathscr{U}^{\lambda}$ (Lauda) equipped with a p-differential categorifies the idempotent version of the small quantum group $\dot{u}_q(\mathfrak{sl}_2)$, i.e.

$$\bigoplus_{\lambda \in \mathbb{Z}} K_0(\mathcal{D}_H(\mathscr{U}^{\lambda}\operatorname{-mod})) \cong \dot{\mathfrak{u}}_q(\mathfrak{sl}_2)$$

L(λ) is categorified by *cyclotomic quotient 2-category* Elias–Qi (2015) also categorified U_q(sl₂)

Question: How to categorify representations?

$$A \xrightarrow{\qquad \& \text{-linear functor}} \operatorname{Vect}_{\Bbbk},$$

A is a k-linear category with one object, or objects \longleftrightarrow idempotents.

Categorified:

OVERVIEW

2-representations in the literature:

- ► Rouquier 2004, 2008 (2-Kac Moody algebras)
- E.g. Khovanov–Mazorchuk–Stroppel 2008 (Specht modules)
- ► Mazorchuk–Miemietz 2010–... (systematic study)
 - $\blacktriangleright \ \mathscr{C} \longrightarrow \mathfrak{R}_{\Bbbk} \quad \text{ 2-functor }$
 - ► finiteness conditions *C*:
 - finitely many objects
 - finitely many indecomposable 1-morphisms
 - ► finite-dimensional 2-Homs ⇒ *finitary* 2-*category*
 - plus adjoints \Rightarrow *fiat 2-categories*
 - target \mathfrak{R}_{\Bbbk} :
 - ► objects: small \Bbbk -Karoubian (or abelian) categories \cong *A*-mod
 - ▶ 1-morphisms \longleftrightarrow tensoring with projective bimodules
 - ▶ 2-morphisms \leftrightarrow bimodule homs

2-REPRESENTATION THEORY

SIMPLE TRANSITIVE 2-REPRESENTATIONS

Question: What are *simple* 2-representations?

For algebra representations:

$$\forall v, w \neq 0 \ \exists a \in A : av = w$$
 "transitivity"

For a 2-representations $M \colon \mathscr{C} \longrightarrow \mathfrak{R}_{\Bbbk}$:

- (1) transitivity on 1-morphisms
- (2) there is no non-trivial ideal in **M** closed under *C*-action not containing identity 2-morphisms

then **M** is *simple transitive* (Mazorchuk–Miemietz, 2014)

References

Question: How to construct simple transitive 2-representations?

Answer: 2-Cell representations! (Mazorchuk–Miemietz, 2010)

(inspired by Kazhdan–Lusztig cells for Hecke algebras, cellular algebras)

Partial order on 1-Morphisms:

 $F \leq_L G \quad \iff \quad G \text{ direct summand } H \circ F, \text{ some } H$

Equivalence classes: *left cells* of $\mathscr{C} \rightsquigarrow \mathcal{L} \subset \mathscr{C}(i, -)$

Cell 2-representations $C_{\mathcal{L}}$:

▶ Principal 2-representations \mathbf{P}_{i} : $j \mapsto \mathscr{C}(i, j)$, $G \mapsto G \circ (-)$

 $\blacktriangleright~$ 2-subrep $R_{\mathcal{L}} \leq P_{\text{i}}$ generated by 1-morphism in the cell \mathcal{L}

• Maximal quotient $C_{\mathcal{L}} := \mathbf{R}_{\mathcal{L}}/\mathbf{I}$ not annihilating identities *Partial converse:* Simple transitive \Longrightarrow 2-cell rep (MM, 2014)

References

 \mathcal{U} categorification of $\dot{U}_q(\mathfrak{sl}_2)$ of Lauda:

- objects $\lambda \in \mathbb{Z}$ weights
- ► generating 1-morphisms $\mathbb{1}_{\lambda}$, $\mathbf{E}_{\lambda}^{(a)}\mathbf{F}_{\lambda}^{(b)}$, $\mathbf{F}_{\lambda}^{(a)}\mathbf{E}_{\lambda}^{(b)}$, $\lambda \leq b a$
- 2-morphisms: string and bubble diagrams, equivalently, endomorphism of nilHecke algebra bimodules

Rouquier (2008), Webster (2013):

 $L_{\lambda} \colon \mathscr{U} \longrightarrow \mathfrak{R}_{\Bbbk}$, categorifies simple $L(\lambda)$ via *cylotomic quiver Hecke (KLR) algebras* $\bigoplus_{n \geq 0} R_n^{\lambda}$ -proj

- Quotient U^λ := U/ker(L_λ) is fiat, and the cell
 2-representations are categorifications of L(λ)
- ▶ these are the only simple transitive 2-representations of *U^λ* (up to equivalence)
- "Schur Lemma": $End(L_{\lambda}) \cong \Bbbk$ -mod (MM, 2015) (The last statement fails for type *B*)

p-DG 2-Representation Theory

Recent work with V. Miemietz (East Anglia)

- A theory of 2-Representation following Mazorchuk–Miemietz in a *p*-dg enriched setting
- Construction of cell 2-representations in this setup
- Derive to get 2-representations of triangulated, stable, 2-categories
- ▶ Applicable to the categorified representations of u
 _q(sl₂) (cyclotomic quotients)

THE SETUP

p-dg enriched 2-category *C*

▶ i, j,... finitely many objects

► $\mathscr{C}(i, j)$ small category enriched with *p*-differential **Suitable finiteness assumptions:** strongly finitary *p*-dg categories $\mathscr{C}(i, j)$

- ► the k-linear category is finitary and Karoubian
- ► all subquotients exist in the enriched category (not necessary closed under ∂)

 ▶ all objects are filtered by k-indecomposables and cofibrant, (*fantastic filtration* of Elias–Qi)
 ~→ strongly finitary p-dg category

Example: $D = \Bbbk[x]/(x^p)$, $\mathbb{1}$, $F = D \otimes_{\Bbbk} D$ generating 1-morphisms, $\partial(x) = x^2$ differential on End $(\mathbb{1}) = D$, End $(F) = D \otimes D$

p-DG **2-**REPRESENTATIONS

Question: What is the target? $\mathbf{M} : \mathscr{C} \longrightarrow ??$

Definition

A *p*-dg 2-representation is a *p*-dg 2-functor $\mathscr{C} \longrightarrow \mathfrak{M}_p$

Target \mathfrak{M}_p :

► objects: small *p*-dg categories A -csf compact semi-free modules over a strongly finitary *p*-dg category

(We employ a combinatorial description generalizing *twisted complexes* of Bondal–Kapranov)

- ► 1-morphisms: tensoring by cofibrant bimodules
- 2-morphisms: bimodule morphisms (enriched)

p-DG **2-**REPRESENTATIONS

Technical aspects:

- *p*-dg modules are *p*-dg functors to \Bbbk -mod_{*H*}
- Cofibrant modules have nice filtration by representable objects.
- subquotient idempotent completion
- closure under all quotients, "enriched abelianization"
- ► Yoneda Lemma Hom(P_i, M) ≅ M(i) equivalence of *p*-dg categories

Theorem (L.–Miemietz)

A p-dg 2-representation $\mathbf{M} \colon \mathscr{C} \to \mathfrak{M}_p$ induces a triangulated 2-representation $\mathbf{K}\mathbf{M}$ of the triangulated 2-category $\mathscr{K}(\mathscr{C})$ (obtained by taking stable categories $\mathcal{K}(\mathscr{C}(i, j))$).

RESULTS

Assume: *C* strongly finitary *p*-dg 2-category

We can define:

- ► analogue of principal 2-representations $(\mathbf{P}_{i}, \mathbf{C}_{\mathcal{L}})$ $\mathbf{P}_{i}(j) = \overline{\mathscr{C}(i, j)}$
- analogue of cell 2-representations (P_i, C_L) first: restrict to cell, second: take a maximal quotient.

Theorem (L.-Miemietz)

For a strongly finitary 2*-category C, the cell* 2*-representations are simple transitive p-dg* 2*-representations.*

The underlying additive **2***-representations are inflations of the cell* **2***-representations of Mazorchuk–Miemietz by a local algebra.*

Special class of examples:

The *p*-dg 2-categories $\mathscr{C}_{\mathcal{A}}$:

- $\mathcal{A} = \prod_{i=1}^{n} \mathcal{A}_i$, a product of strongly finitary *p*-dg categories
 - objects: $i \longleftrightarrow \overline{\mathcal{A}}_i$
 - ► 1-morphisms generated by: tensoring with cofibrant (k-indecomposable) $A_i \otimes A_i^{\text{op}}$ -bimodules
 - ► 2-morphisms: Morphisms of bimodules

Theorem (L.–Miemietz)

Assume $\partial(\operatorname{rad} \mathcal{A}) \subset \operatorname{rad} \mathcal{A}$, \mathcal{A} strongly finitary. Then $C_{\mathcal{L}} \cong \mathbf{N}$, where \mathbf{N} is the natural (defining) 2-representation (\mathcal{L} is the unique non-identity cell)

CATEGORIFICATION OF SMALL QUANTUM GROUPS

Via cyclotomic quotients $\mathbf{L}_{\lambda} : \mathscr{U} \longrightarrow \mathfrak{R}_{\Bbbk}$ categorifies simple $L(\lambda)$ for small quantum group $\dot{\mathbf{u}}_q(\mathfrak{sl}_2)$ [Elias–Qi] $\longrightarrow \mathscr{U}^{\lambda} := \mathscr{U}/\ker \mathbf{L}_{\lambda}$ is strongly finitary Divided powers $\mathbf{F}^{(r)} \mathbb{1}_{\lambda} \mathbf{E}^{(s)} \longleftrightarrow$ tensoring by $NH_r^{\lambda} e_r \otimes e_s^* NH_s^{\lambda}$ generate lowest cell \mathcal{L} w.r.t \leq_L

$$\operatorname{End}_{\gamma\lambda}(\mathbf{F}^{(r)}\mathbb{1}_{\lambda}) \cong H_r^{\lambda}$$
 (coinvariant algebra)

APPLICATIONS OF RESULTS

Corollary (L.–Miemietz) $\mathscr{U}_{\mathcal{L}}^{\lambda} \approx \mathscr{C}_{\mathcal{A}}$ are *p*-dg biequivalent, where \mathcal{A} is generated by regular *p*-dg bimodules over $NH^{\lambda} = \prod_{r=0}^{p-1} NH_{r}^{\lambda}$ **Idempotent completion:** $\widehat{\mathscr{U}}^{\lambda}_{\mathcal{L}} \approx \mathscr{C}_{\widehat{\mathcal{A}}} \approx \mathscr{C}_{B}$ *B* is the product of coinvariant algebras $B = \prod_{r=0}^{p-1} H_{r}^{\lambda}$ \implies The 2-cell representation $\mathbf{C}_{\mathcal{L}}$ of $\widehat{\mathscr{U}}^{\lambda}$ categorifies $L(\lambda)$

Theorem (L.–Miemietz)

Every endofunctor of the categorified simple representation \mathbf{L}_{λ} of \mathscr{U}^{λ} is p-dg equivalent to a fantastic filtration of the identity functor.

MOTIVATION FROM CATEGORIFICATION 00000

Some References

- [EQ16] B. Elias and Y. Qi, An approach to categorification of some small quantum groups II, Adv. Math. 288 (2016), 81–151. MR3436383
- [Kho16] M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps, J. Knot Theory Ramifications 25 (2016), no. 3, 1640006, 26. MR3475073
- [KQ15] M. Khovanov and Y. Qi, An approach to categorification of some small quantum groups, Quantum Topol. 6 (2015), no. 2, 185–311. MR3354331
- [LM17] R. Laugwitz and V. Miemietz, Cell 2-Representations and Categorification at Prime Roots of Unity, ArXiv e-prints (June 2017), available at 1706.07725.
- [MM11] V. Mazorchuk and V. Miemietz, *Cell 2-representations of finitary* 2-categories, Compos. Math. **147** (2011), no. 5, 1519–1545. MR2834731
- [MM14] _____, Additive versus abelian 2-representations of fiat 2-categories, Mosc. Math. J. 14 (2014), no. 3, 595–615, 642. MR3241761
- [MM16] _____, *Transitive 2-representations of finitary 2-categories*, Trans. Amer. Math. Soc. **368** (2016), no. 11, 7623–7644. MR3546777
 - [Qi14] Y. Qi, *Hopfological algebra*, Compos. Math. **150** (2014), no. 1, 1–45. MR3164358